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Abstract

An analysis is made of the nonlinear interactions between flow in the subglottal vocal tract and glottis, sound waves

in the subglottal system and a mechanical model of the vocal folds. The mean flow through the system is produced by a

nominally steady contraction of the lungs, and mechanical experiments frequently involve a ‘lung cavity’ coupled to an

experimental subglottal tube of arbitrary or ill-defined effective length L, on the basis that the actual value of L has little

or no influence on excitation of the vocal folds. A simple, self-exciting single-mass mathematical model of the vocal

folds is used to investigate the sound generated within the subglottal domain and the unsteady volume flux from the

glottis for experiments where it is required to suppress feedback of sound from the supraglottal vocal tract. In

experiments where the assumed absorption of sound within the sponge-like interior of the lungs is small, the influence of

changes in L can be very significant: when the subglottal tube behaves as an open-ended resonator (when L is as large as

half the acoustic wavelength) there is predicted to be a mild increase in volume flux magnitude and a small change in

waveform. However, the strong appearance of second harmonics of the acoustic field is predicted at intermediate

lengths, when L is roughly one quarter of the acoustic wavelength. In cases of large lung damping, however, only

modest changes in the volume flux are predicted to occur with variations in L.

r 2009 Elsevier Ltd. All rights reserved.
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1. Introduction

Titze (1988) has argued that feedback coupling of sound waves in the upper and lower sections of the vocal tract on

the motion of the vocal folds must generally be relatively weak. Such coupling is likely to be at its strongest at higher

frequencies when the voicing frequency approaches the first formant (Joliveau et al., 2004). Then voicing sources can

interact with resonances to produce undesirable, involuntary and abrupt changes in frequency; this has been observed

during phonation, particularly for resonances of the lower (or subglottal) section of the vocal tract (Titze and Story,

1995; Austin and Titze, 1997; Titze, 2008).
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Experimental studies of phonation that involve either an excised larynx or a laboratory model of the larynx are

frequently designed to avoid unwanted coupling with the subglottal region by use of a long subglottal duct whose

resonance frequencies are very much smaller than voiced frequencies of interest (Titze and Story, 1995; Alipour and

Scherer, 2001; Thomson et al., 2005; Zhang et al., 2007a). On the other hand, some experiments are performed using

physical models that replicate more closely the human subglottal system [e.g. Zhang et al. (2007b, 2009)]. The length of

the subglottal tube upstream of the larynx is then typically between 17 and 20 cm and it usually terminates in a large

reservoir or plenum. The whole arrangement is intended to provide a simplified mechanical model of the trachea,

bronchi, and lungs (Flanagan, 1958; Ishizaka et al., 1976).

Many reports of these experiments omit completely important details of the laboratory subglottal region, so that

likely influences on voicing of subglottal geometry and mechanical properties cannot easily be ascertained, even when

these influences could play a prominent role in determining measured output acoustics (Zhang et al., 2007a). Similarly,

numerical investigations frequently proceed on the assumption that the subglottal region is a constant pressure source,

without resonances. Indeed, these difficulties were recognized by Zhang et al. (2007a) who concluded, from detailed

measurements supported by linearized analysis of the coupled motion of the vocal folds and the subglottal sound, that

the results of many experiments reported in the literature are actually a consequence of the action on the vocal folds of

unreported or unmeasured feedback from subglottal resonances.

Estimates of feedback strength and its influence on glottis oscillations have generally involved ad hoc representations

of the coupling between the acoustic field and surface tissue in the glottis (Flanagan and Landgraf, 1968; Gupta et al.,

1973; Zanartu et al., 2007; Titze, 2008). In particular, according to an analysis of Zanartu et al. (2007), using a single-

mass model of the glottis, the back reaction of acoustic pressures strongly control the maintenance of self-sustaining

oscillations. When the vocal folds are coupled only to the lower vocal tract no self-sustained oscillation is observed for

any subglottal configuration, apparently in contradiction to the simple single-mass models suggested by Zhang et al.

(2007b). Thus the properties of the subglottal tract can strongly affect phonation, although according to Zanartu et al.

(2007) the influence of acoustic feedback from the upper tract is more important. Many of these conclusions may be a

consequence of the properties of the particular single-mass model of the vocal folds used in their analysis because, for

example, the one-mass model of Howe and McGowan (2009) exhibits self-sustained oscillations even in the absence of

acoustic feedback. However, a number of experimental studies [e.g. Austin and Titze (1997), Zhang et al. (2007a,b)]

record variations of the fundamental frequency with changes in the subglottal and supraglottal tracts.

In this paper subglottal feedback is examined in detail for a mechanical model of the glottis whose fluid mechanical

characteristics can be specified precisely, and where the acoustic and aerodynamic pressures associated with vortex

shedding during jet formation are calculated with proper account taken of the local geometry of the moving boundaries.

A nonlinear analytical model is developed in terms of the theory of aerodynamic sound (Howe, 1998; Howe and

McGowan, 2007) for a subglottal system often used in experiments. The system consists of a rigid tube of constant

cross-section joining a mechanical model of the vocal folds and terminating at its remote end at a reflectionless plenum

or duct of much larger cross-section, henceforth referred to as the ‘lungs’. A self-sustaining model, requiring no

empirical input, is investigated that makes use of a simple, but aerodynamically consistent single-mass model of the

vocal folds [described in detail by Howe and McGowan (2009)] in accordance with the notion of nonlinear excitation

propounded by Fant (1960, Section A.21). The theory determines (for this particular model) the details of the influence

of subglottal acoustics on the unsteady volume flux through the glottis, and the dependence of the wave profile on the

length of the subglottal tube, and on conditions at the interface with the lungs, where the absorption of sound within the

lung complex is shown to strongly influence the acoustic-vocal fold interaction. The whole motion is driven by a steady

contraction of the lung cavity. The investigation complements the linearized study of the same problem by Zhang et al.

(2007a).

The analytical problem is formulated and formally solved in Sections 2 and 3, with the help of an aeroacoustic

Green’s function derived in the Appendix. The calculation of the glottal volume flux is discussed in Section 4, and

numerical predictions of the coupled motions of the vocal folds and the subglottal acoustics are then presented

(Section 5).
2. Coupling of the subglottal tract and the vocal folds

2.1. The overall model

We consider a simplified, analytical model of the subglottal vocal tract and vocal folds, illustrated overall in Fig. 1. In

this model the upper tract is absent, so that sound generated at the glottis radiates directly into free space.
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Fig. 1. Mathematical model of the subglottal vocal region coupled to the glottis.
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This arrangement is used frequently in phonation experiments (although, of course, the configuration is not a strictly

physiological model) and precludes any possible feedback from the upper tract (Zhang et al., 2007a). The subglottal

tract (or ‘tube’) is just upstream of the vocal folds and is treated as a uniform, hard walled duct of length ‘ and cross-

sectional area A. The duct axis is taken to coincide with the interval �‘oxo0 of the x axis of the rectangular

coordinate system x ¼ ðx; y; zÞ. The ‘open’ end at x ¼ 0 communicates with the ambient free space via an idealized

glottal opening, formed by a simplified ‘single mass’ mechanical model of the vocal folds, which is described below. The

tract terminates at its inner end (x ¼ �‘) with an abrupt increase in cross-sectional area to AL followed by a nominally

infinite duct that is taken to model the lung plenum—sound radiating from the subglottal tube into this duct proceeds

without reflection to x ¼ �1, which is taken to be equivalent to absorption by the lossy compliance of the lungs.

Voicing in vocal fold experiments is initiated by supplying the plenum with a constant volume flow of air. This

mimics the steady contraction of the lung cavity and is represented mathematically by the action of a planar, steady

volume source that spans the lower lung plenum at x ¼ �‘̄ ðo� ‘Þ. The steady flow from this source first enters the

subglottal tube as a pressure wave that is subsequently multiply reflected within the tube and modified by vortex sound

generated by ‘jetting’ at the glottis. It is required to determine the sound radiated from the glottis (at the free space point

x in Fig. 1, for example); this is equivalent to determining the unsteady volume flux through the glottis because, from

the point of view of an observer in free space, the radiation is necessarily of monopole type. In normal adult speech the

voicing frequency f 0�125Hz is very much smaller than the first formant of the subglottal system (�700Hz), so that

resonances of the lower vocal tract would not normally be expected to modify significantly voicing properties.

2.2. Single-mass model of the vocal folds

The volume flux through the glottis is modulated by fluctuations in the glottal cross-sectional area produced by

aerodynamic coupling between the flow and the vocal folds. In the original single-mass model (Fant, 1960; Flanagan,

1972) (Fig. 2) the glottal flow was approximated by potential flow through an orifice whose cross-section varied in a

prescribed manner with time. Although this potential flow is transformed into a free field jet on emerging from the

glottis, irrotational flow fluctuations within the glottis are incapable of supplying the feedback necessary to maintain the

folds in oscillatory motion.

During phonation the glottal cross-section resembles more-or-less an ellipse of large aspect ratio, whose major and

minor axes 2a and 2b in Fig. 3(a) vary with time. In this paper this elongated shape is approximated by a rectangle of

fixed span 2a, marginally smaller than the diameter of the vocal tract near the glottis, and of time-dependent width 2zðtÞ
(Fig. 3(b)). To fix ideas, we suppose that the vocal tract has rectangular cross-section at the glottis, of span ‘3 � 2a and

width 2h, as indicated in Fig. 2. The variation of zðtÞ is governed by the aerodynamic interaction of the vocal folds and

the unsteady flow through the glottis. This interaction is assumed to occur according to a modified single-mass model
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Fig. 2. Geometry of the single mass model of the vocal folds.

Fig. 3. (a) Large aspect ratio elliptic approximation to the shape of the glottal cross-section during phonation and (b) rectangular

approximation used in the text.
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introduced by Howe and McGowan (2009); the model includes the influence of quasi-two-dimensional flow separation

from the glottal wall which provides sufficient negative damping to maintain oscillatory motion of the folds. The

separation zone changes during the inward and outward oscillations of the folds in the manner illustrated in Fig. 4,

which shows a cross-section of the flow in a median plane normal to the flow and parallel to the short sides of the

rectangular model glottis of Fig. 3(b), with the flow through the glottis being from left to right. In condition (a)

dz=dt40 and the glottis is expanding: the incoming flow separates at the local ‘trailing edge’ at the front edge A of the

glottis, so that the pressure applied over the glottal walls is uniform and approximately the same as the uniform free

space pressure. In case (b) dz=dt � 0, the glottal area is decreasing and vorticity is now shed from the neighbourhood of

the trailing edge at B. In voiced speech the effective Strouhal number of the unsteady motion within the glottis

f o‘g=V�0:1 (where the mean flow speed across the glottis of axial extent ‘g is typically of order V�20m=s), which is

small enough for it to be assumed that, over a cycle of oscillation at frequency f o, the fluid passes through a continuous

sequence of quasi-static states of motion.
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Fig. 4. Operating stages of the ‘one mass’ model of the glottis: (a) vortex shedding occurs from the leading edge of an expanding glottis

and (b) shedding occurs from the aft edge during contraction.
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During expansion, vorticity is shed from the fore edge A of the glottis in the manner illustrated in Fig. 4(a), resulting

in the formation of a jet with a contraction ratio (relative to the glottal cross-section) s�0:62; when the glottis begins to

contract the point of free shear layer formation rapidly jumps to the aft edge B of the glottis (Fig. 4(b)), beyond which

the flow expands into a jet whose cross-section is marginally larger than that of the orifice, with s�1:15. The resulting
attached accelerated flow within the glottis produces a large decrease in the glottal wall pressure (below that in the

downstream region) and correspondingly large ‘suction’ forces that reinforce the rate of decrease in glottal area.

Further details of the calculation of these forces are given by Howe and McGowan (2009).

Symmetric oscillatory fluctuations in the glottal width 2zðtÞ of the model of Fig. 4 are assumed to be governed by the

following oscillator equation:

d2z
dt2
þ go

dz
dt
þ O2ðz� z0Þ ¼ �

F ðtÞ

m
, (2.1)

where m is the effective mass of each fold, z0 is the equilibrium semi-width of the glottis, go is a structural damping

coefficient, and O is the radian resonance frequency determined by the elastic properties of the fold. The aerodynamic

force F is the suction force exerted on the glottal wall when dz=dt � 0 (Case (b) of Fig. 4) and is otherwise zero, i.e. (see

Howe and McGowan, 2009 for further details)

F ¼

1

33=2p
roU2

ssD;
dz
dt
� 0;

0;
dz
dt
40;

8>><
>>: (2.2)

where D � DðtÞ ¼ 4azðtÞ is the cross-sectional area of the glottis and Us � UsðtÞ is the contracted jet velocity in the

uniform downstream section of the jet (cf. Fig. 5).

The suction force formula (2.2) is based on a precise modelling of the hydrodynamic flow within and near the glottis

using ‘free streamline theory’ (unlike, for example, the heuristic negative damping mechanism proposed for the

maintenance of self-sustained oscillations by Fulcher et al. (2006)). Its discontinuous behaviour arises because of the

neglect in the mathematical model for F of the finite streamwise length ‘g of the glottis. This implies that the time

�‘g=V required for the separation point to move between the ends of the glottis is negligible, so that the adjustment

occurs instantaneously. Provided this limitation is understood the reader should experience no difficulty in interpreting
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Fig. 5. Stream surfaces of the potential function Fðy; tÞ intersecting the jet boundary with outward normal n.
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any consequential (and small) discontinuities in predicted acoustic waveforms. Such discontinuities were avoided by

Zanartu et al. (2007) by using an arbitrary smoothing of discontinuities associated with abrupt changes in the ‘glottis

discharge coefficient’.

Similarly, according to this model, mutual impact of the vocal folds occurs when z! 0. In solving Eq. (2.1) it is

assumed that this impact is inelastic, so that dz=dt is then reduced to zero.
3. The aeroacoustics of voicing

3.1. The steady lung pressure

The ultimate source of sound is the uniform volume flow from the planar volume source spanning the lung plenum at

x ¼ �‘̄ (Fig. 1). The idealized subglottal system has acoustically rigid walls and it is assumed that all relevant

frequencies, including the resonance frequencies of the subglottal system, are small enough that only plane waves can

propagate. Similarly, dissipation within the flow is ignored, except in so far as acoustic energy is lost by radiation into

free space through the glottis, and by radiation into the lung plenum from the subglottal tube. The motion produced by

the source in a homogeneous fluid may therefore be regarded as irrotational and defined by a velocity potential j. If the
flow starts at time t ¼ t0, say, the potential is determined by

1

c2o

@2

@t2
� r2

� �
j ¼ �qHðt� t0Þdðxþ ‘̄Þ, (3.1)

where co is the speed of sound. The volume source on the right hand side is assumed to have the constant strength q per

unit area in the plane x ¼ �‘̄ and Hðt� toÞ is the Heaviside step function, equal to 0, 1 according as t o
4 t0. It is

convenient to choose the source time t0 ¼ �‘̄=co. Then initially the solution of Eq. (3.1) is a plane wave j0 radiating

from the source towards the subglottal tract, given by

j0 ¼ �
coq

2
t�

x

co

� �
H t�

x

co

� �
; �‘̄oxo� ‘. (3.2)

This wave sets up a steady flow at speed @j0=@x ¼ q=2 from the source towards the subglottal tube.

A plane wave jR is reflected back into the lung plenum when this wave reaches the area change at the junction at

x ¼ �‘. It is given by

jR ¼ �
coq

2

AL �A

AL þA

� �
tþ

x

co

þ
2‘

co

� �
H tþ

x

co

þ
2‘

co

� �
; xo� ‘, (3.3)
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where ðAL �AÞ=ðAL þAÞ is the junction reflection coefficient (Pierce, 1989). The resulting initial pressure established

just to the left of the junction is therefore

p ¼ �ro

@

@t
ðj0 þ jRÞ ¼

rocoqAL

AL þA
, (3.4)

where ro is the mean fluid density.

We now define the pressure pI by

pI ¼
rocoqAL

AL þA
so that q ¼

pI

roco

AL þA

AL

� �
. (3.5)

The pressure pI is the steady pressure produced by the volume source at the remote end x ¼ �‘ of the subglottal tube in
the absence of sound generation and reflections at the glottis. By continuity, the pressure wave transmitted into the

subglottal tube when j0 arrives at the junction also has magnitude pI , and sound begins to be generated by the glottis at

x�0 after the arrival of the pressure wave

p ¼ pIH t�
x

co

� �
(3.6)

at time t ¼ 0.

In the following we shall assume that the pressure pI is prescribed (typically of the order of 1 kPa in magnitude).

3.2. Formal representation of sound radiated from the glottis

In the absence of dissipation, entropy changes within the flow can be neglected and sound production is governed by

a simplified form of the equation of vortex sound (Howe, 1998). This determines the acoustic field in terms of the

fluctuations in the total enthalpy B, given in homentropic flow by

B ¼

Z
dp

r
þ

1

2
v2, (3.7)

where r ¼ rðpÞ is the local density and v is the velocity. In those regions where the flow is irrotational, Bernoulli’s

equation implies that B � �@j=@t. It then follows by combination of the vortex sound equation (Howe, 1998) and the

time differential of Eq. (3.1) that the composite equation governing sound production by the source flow q and the jet

flow interaction with the glottis can be cast in the form

1

c2o

@2

@t2
� r2

� �
B ¼

pI

roco

AL þA

AL

� �
d tþ

‘̄

co

� �
dðxþ ‘̄Þ þ divðx ^ vÞ. (3.8)

The first term on the right is the contribution from the flow source q of Eq. (3.1), with q replaced by its definition (3.5) in

terms of pI and the start time t0 of Eq. (3.1) replaced by �‘̄=co. The divergence source term involves the vorticity

x ¼ curl v and is confined principally to the free shear layers of the jet.

Eq. (3.8) is solved by use of Green’s function Gðx; y; t; tÞ, which corresponds to the sound produced by an impulsive

point source at y � ðx0; y0; z0Þ at time t, and satisfies

1

c2o

@2

@t2
� r2

� �
G ¼ dðx� yÞdðt� tÞ; G ¼ 0 for tot. (3.9)

The normal derivative @G=@xn ¼ 0 vanishes on the rigid walls of the vocal tract, and is also required to vanish on the

instantaneous position of the moving walls of the glottis.

The application of Green’s theorem and the radiation condition in the usual way (Baker and Copson, 1969; Landau

and Lifshitz, 1987; Crighton et al., 1992; Howe, 1998) then supplies the following formal representation of the solution

of Eq. (3.8)

Bðx; tÞ ¼
pI

roco

AL þA

AL

� �Z
SL

Gðx; ð�‘̄; y0; z0Þ; t;�‘̄=coÞdy0 dz0

�

Z
ðx ^ vÞðy; tÞ �

@G

@y
ðx; y; t; tÞd3ydtþ

I
SðtÞ

Gðx; y; t; tÞ
@v

@t
ðy; tÞdSðyÞdt, (3.10)

where in the linear acoustic region Bðx; tÞ � �@j=@t � pðx; tÞ=ro.
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The first term on the right-hand side represents the direct sound generated by the lung source q at x ¼ �‘̄, the
integration being over the cross-section SL of the lung plenum occupied by this source. The second integral gives

the sound generated by vortex sources in the unsteady jet emerging from the glottis, the integration being over the

region of space wherein xa0 and over all source times �1oto1. The final term involves a surface integration of

the normal component of velocity over the walls SðtÞ of the glottis, and accounts for the production of ‘monopole’

sound by the volumetric fluctuations of the oscillating vocal folds. This mechanism is known to make a relatively

small contribution to voicing [see, e.g., Howe and McGowan (2007), Zhao et al. (2002)] and will henceforth be

ignored.

3.3. Green’s function

There is no closed form representation of Green’s function that is applicable under all conditions. But for the present

purposes it is only necessary to be able to calculate the sound using Eq. (3.10) in the limit in which the dominant

acoustic wavelengths are large compared to the diameter of the vocal tract. In these circumstances only plane waves can

propagate within the subglottal tube and in the lung plenum xo� ‘̄, and approximate representations for Gðx; y; t; tÞ
are easily derived. The details of the calculations are summarized in the Appendix.

To fix ideas we consider the calculation of the sound in free space at the point x of Fig. 1. The two principal source

terms in the integrals of Eq. (3.10) are situated: (i) at points y on the volume source plane x ¼ �‘̄ within the lungs, i.e.

within the region labelled L in Fig. A.1 of the appendix and (ii) at points y in the immediate neighbourhood of the

glottis (region E of Fig. A.1). It is shown in the appendix that the corresponding approximate functional forms of

Green’s function are GL and GE given by:

Case (i): x in free space, y � ðx0; y0; z0Þ in the lung plenum x0o� ‘:

GLðx; y; t; tÞ ¼
T

2pjxj

X1
n¼0

jRjnd t� tþ
x0

co

�
½jxj þ 2nLþ ‘E�

co

� �
. (3.11a)

Case (ii): x in free space, y � ðx0; y0; z0Þ in the neighbourhood of the glottis:

GEðx; y; t; tÞ ¼
1

2pjxj
d t� t�

jxj

co

� �
þ

Fðy; tÞ
2pcojxj

X1
n¼0

jRjnd0 t� t�
½jxj þ 2nLþ ‘E�

co

� �(

þ
X1
n¼0

jRjnþ1d0 t� t�
½jxj þ 2ðnLþ ‘Þ þ ‘E�

co

� �)
. (3.11b)

In these formulae the prime on the delta functions denotes differentiation with respect to the argument, and

R ¼ �
AL �A

AL þA

� �
; T ¼

2A

AL þA
(3.12)

are, respectively, the long wavelength reflection and transmission coefficients for a plane wave incident on the junction

at x ¼ �‘ from within the subglottal tube. The function Fðy; tÞ is a velocity potential describing flow through the glottis

in its state at time t; it is a solution of Laplace’s equation with vanishing normal derivative on all boundaries, and it is

normalized such that

Fðy; tÞ � �
A

2pjyj
as jyj ! 1 in free space;

� x0 � ‘0 at large distances from the glottis in the subglottal tract;

9>=
>;, (3.13)

where ‘0 � ‘0ðtÞ�Oð
ffiffiffiffiffi
A
p
Þ is the glottis ‘end correction’ (Rayleigh, 1945; Howe, 1998). It is shown in the Appendix that

in calculating the phase of successive terms in expansions (3.11a) and (3.11b) it is permissible to replace all occurrences

of ‘0 by a mean value

‘E ¼ h‘
0i, (3.14)

where the angle brackets denote a suitable average over a cycle of operation of the glottis. The length L is just the length

of the subglottal tube augmented by the end correction: L ¼ ‘ þ ‘E.
The end correction ‘0 becomes very large when the cross-section of the glottis becomes small. This can cause the

effective acoustic length of the subglottal tract to vary during a period of phonation, producing a variation of subglottal

resonance frequencies. However, near closure, when ‘0 is large, the acoustic amplitude or volume flux through the glottis



ARTICLE IN PRESS
M.S. Howe, R.S. McGowan / Journal of Fluids and Structures 25 (2009) 1299–1317 1307
is small. Thus, for those times when the acoustic flux is significant we can use a smaller, typical value of ‘E. Numerical

results given by Howe and McGowan (2007), for example, suggest that, at least for the purposes of the present

calculation, ‘E=h � 5.
3.4. The free space radiation

We are now ready to evaluate the sound radiated from the glottis, given by Eq. (3.10). For the first integral on the

right hand side Green’s function must be taken in the form GL of Eq. (3.11a). Taking account of the definition (3.12) of

T we find

pI

roco

AL þA

AL

� �Z
SL

Gðx;�‘̄; y0; z0; t;�‘̄=coÞdy0 dz0

¼
A

2pjxj
@

@t

2pI

roco

X1
n¼0

jRjnH t�
½jxj þ 2nLþ ‘E�

co

� �( )
. (3.15)

For the second, vortex integral on the right of (3.10) we use the form G ¼ GE, for which it is necessary to evaluateZ
ðx ^ vÞðy; tÞ �

@F
@y
ðx; tÞd3y.

To do this we use the method of Howe and McGowan (2007) and observe that in a first approximation the vorticity is

confined to the free streamsurfaces at the edges of the jet emerging from the glottis, as illustrated in Fig. 5. This figure

also displays the instantaneous hypothetical family of streamsurfaces of the flow through the glottis determined by the

potential Fðy; tÞ. On the jet interface vorticity is convected at half the local jet velocity, and we can put

x ^ v ¼ 1
2

U2
sdðs?Þn, where s? is distance measured in the direction of the outward unit normal n of the jet and Us is the

jet velocity just inside the shear layer. The main contribution to the integral is from that section of the jet very close to

the glottis where the jet interface is cut by the F-streamlines. The velocity Us does not vary significantly over this short

distance along the jet, and we therefore have

Z
ðx ^ vÞðy; tÞ �

@F
@y
ðx; tÞd3y �

U2
sðtÞ
2

I
SJ

@F
@y
ðy; tÞdS �

AU2
s

2
, (3.16)

where the second integral is over the curved surface SJ of the jet, and we have used the normalization condition (3.13)

of Fðy; tÞ.
Hence

�

Z
ðx ^ vÞðy; tÞ �

@G

@y
ðx; y; t; tÞd3ydt

¼ �
A

2pcojxj

@

@t

1

2
U2

s t�
ðjxj þ ‘EÞ

co

� ��

þ
X1
n¼1

1

2
jRjn U2

s t�
ðjxj þ 2nLþ ‘EÞ

co

� �
þU2

s t�
ðjxj þ 2nL� ‘EÞ

co

� �� �)
. (3.17)

When results (3.15) and (3.17) are substituted into the right-hand side of (3.10) (with the final monopole integral

discarded), and Bðx; tÞ is replaced by pðx; tÞ=ro in the acoustic domain, we find that the free space far field sound is

given by

pðx; tÞ

ro

�
A

2pcojxj

@

@t

2pI

ro

X1
n¼0

jRjnH t�
½jxj þ 2nLþ ‘E�

co

� �
�

1

2
U2

s t�
ðjxj þ ‘EÞ

co

� �(

�
X1
n¼1

1

2
jRjn U2

s t�
ðjxj þ 2nLþ ‘EÞ

co

� �
þU2

s t�
ðjxj þ 2nL� ‘EÞ

co

� �� �)
,

jxj ! 1. (3.18)
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4. The glottal volume flux

4.1. The volume flux equation

Eq. (3.18) defines an omnidirectional acoustic field radiating into the half-space x40 with all of the characteristics of

a monopole. As such the sound can be expressed in terms of the unsteady volume flux Q ¼ DsUs, where Ds is the

asymptotic contracted jet cross-sectional area downstream of the glottis.

Let jðx; tÞ denote the velocity potential in the acoustic far field, where p ¼ �ro@j=@t. Then Eq. (3.18) is equivalent to

jðx; tÞ � �
A

2pcojxj

2pI

ro

X1
n¼0

jRjnH t�
½jxj þ 2nLþ ‘E�

co

� �
�

1

2
U2

s t�
ðjxj þ ‘EÞ

co

� �(

�
X1
n¼1

1

2
jRjn U2

s t�
ðjxj þ 2nLþ ‘EÞ

co

� �
þU2

s t�
ðjxj þ 2nL� ‘EÞ

co

� �� �)
,

jxj ! 1. (4.1)

But, we can also write

jðx; tÞ � �
Q

2pjxj
t�
jxj

co

� �
� �

Ds
2pjxj

Us t�
jxj

co

� �
; jxj ! 1. (4.2)

Therefore, if we now define

MsðtÞ ¼
UsðtÞ

co

, (4.3)

then Eqs. (4.1), (4.2) imply that

M2
sðtÞ þ

2Ds
A

MsðtÞ ¼
4pI

roc2o

X1
n¼0

jRjnH t�
2nL

co

� �

�
X1
n¼1

jRjn M2
s t�

2nL

co

� �
þM2

s t�
2nL

co

þ
2‘E
co

� �� �
. (4.4)

This equation determines the glottal volume flux

QðtÞ ¼ DscoMsðtÞ, (4.5)

provided D � DðtÞ is also known. Eq. (4.4) must therefore be solved simultaneously with Eq. (2.1) for z ¼ D=4a.

To do this it is convenient in the general case to express MsðtÞ directly in terms of pI and the values of Ms at earlier

times, as follows:

MsðtÞ ¼
sDðtÞ
A

� �2

þ
4pI

roc2o

X1
n¼0

jRjnH t�
2nL

co

� �(

�
X1
n¼1

jRjn M2
s t�

2nL

co

� �
þM2

s t�
2nL

co

þ
2‘E
co

� �� �)1=2

�
sDðtÞ
A

. (4.6)

Here we have taken the larger (and generally positive) root of the quadratic Eq. (4.4). This is in accord with experiment

that requires the net volume flow to be out of the glottis, and also represents the continuous solution of the problem

starting from t ¼ 0.

At large times, when the voiced radiation assumes an invariant waveform we can use the asymptotic formula

X1
n¼0

jRjnH t�
2nL

co

� �
¼

AL þA

2A
; t!1.

If we now put

PI ¼
AL þA

2A

� �
pI , (4.7)
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then (4.6) becomes

MsðtÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sDðtÞ
A

� �2

þ
4PI

roc2o
�
X1
n¼1

jRjn M2
s t�

2nL

co

� �
þM2

s t�
2nL

co

þ
2‘E
co

� �� �vuut �
sDðtÞ
A

; t!1. (4.8)

We can check the consistency of this result in the irrotational limit, in the absence of jetting from the glottis.

Nonlinear terms are then negligible and the glottal outflow expands irrotationally into the half-space x40, i.e. s!1.

Then M2
s can be neglected in the square root on the right of (4.8) which, because ðsD=AÞ2b4PI=roc2o, can be expanded

to first order in PI yielding (with the aid of Eqs. (4.7) and (3.5))

Q ¼ scoDðtÞMsðtÞ ¼
2API

roco

¼
ðAL þAÞ

roco

pI �ALq. (4.9)

This confirms that, following the passage of all transients and when glottal nonlinearity is unimportant, all of the

volume flow ALq from the lung plenum volume source flows out steadily through the glottis.

4.2. Resonant oscillations

When ‘E5L the glottal oscillations occur without impeding significantly the volume flow from the lungs. The

resonance oscillations then correspond to standing waves in the subglottal tract in which the period 1=f 0 of the motion

of the vocal folds is just equal to the travel time 2L=co required by sound waves for one ‘round trip’ between the

opposite ends of the tract. In that case, and for large times, we have

Ms t�
2nL

co

� �
¼MsðtÞ; Ms t�

2nL

co

þ
2‘E
co

� �
¼Ms t�

2‘

co

� �
.

Eq. (4.4) then becomes

M2
sðtÞ þ

2DsT
A

MsðtÞ ¼
4TPI

roc2o
� jRjM2

s t�
2‘

co

� �
, (4.10)

so that

MsðtÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sDðtÞT

A

� �2

þ
4TPI

roc2o
� jRjM2

s t�
2‘

co

� �s
�

sDðtÞT
A

; t!1. (4.11)

Similarly, when f o‘E=co51 we have the corresponding further simplifications

M2
sðtÞ þ

2Ds
AL

MsðtÞ ¼
4PI

roc2o

A

AL

, (4.12)

and

MsðtÞ ¼
A

AL

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sDðtÞ
A

� �2

þ
4PI

roc2o

AL

A

s
�

sDðtÞ
A

8<
:

9=
;; t!1. (4.13)
5. Numerical results

5.1. Parameter values

Previous numerical and analytical modelling [e.g. Zhao et al. (2002), Zanartu et al. (2007), Howe and McGowan

(2007, 2009)] indicates that the predicted waveform for steady excitation of the glottis by a nominally constant over

pressure pI arriving from the lungs rapidly attains a steady periodic form. In the present case predictions of the

unsteady volume flux QðtÞ ¼ DscoMsðtÞ through the glottis are governed by the simultaneous solution of the vocal

fold Eq. (2.1) for zðtÞ and the appropriate equation from Section 4 that determines MsðtÞ in terms of pI and

D � 4azðtÞ.
The numerical results discussed in this section illustrate predictions when the natural frequency of the folds

f 0 � O=2p ¼ 125Hz, typical of an adult male, and for pI ¼ 10 cm of water (�1 kPa) when co ¼ 340m=s,
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Fig. 6. (a) Two cycles of the volume flux through the glottis in the limiting case of an infinitely long subglottal tract (R ¼ 0) when

f 0 ¼ 125Hz, z0=h ¼ 0:05 and pI ¼ 10 cm of water and (b) the corresponding variation of vocal fold amplitude zðtÞ=h.
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ro ¼ 1:23 kg=m3. The following values have also been assumed for other parameters entering the formulae:

h ¼ 10mm; ‘3=h ¼ 1:3; m ¼ 0:5	 10�4 kg; go=f 0 ¼ 0:1. (5.1)

We have used values of the jet contraction ratio recommended by Howe and McGowan (2009)

s ¼
0:62 for dz=dt40;

1:15 for dz=dto0:

(
(5.2)

The folds are first set into motion from a state of rest by the arrival at the glottis of the pressure pI , because the initial

flow through the glottis is irrotational and it necessarily produces a non-zero value for the suction force F ðtÞ on the right

of Eq. (2.1). The initial rest position of the folds is taken to be z ¼ z0, with dz=dt ¼ 0, where z0=h ¼ 0:05, and the

solution is advanced by means of a fourth order Runge–Kutta procedure.

5.2. The infinitely long subglottal tube

The dissipation of acoustic waves radiated towards the lungs may be assumed to suppress reflections from the inner

end x ¼ �‘ of the subglottal tract when ‘ becomes very large. This is mathematically equivalent to setting R ¼ 0 in the

formulae of Section 4, in which case Eq. (4.6) reduces to

MsðtÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sDðtÞ
A

� �2

þ
4pI

roc2o

s
�

sDðtÞ
A

; t!1. (5.3)

Fig. 6(a) displays two cycles of the corresponding volume flux waveform

Q

Qo

�
roc2o
pI

sðtÞMsðtÞ
zðtÞ
h

, (5.4)

plotted as a function of the nondimensional time f 0t, where Qo ¼ApI=roco is the volume flux of the initial pressure

pulse incident on the glottis. Also shown in Fig. 6(b) is the calculated variation of the semi-width zðtÞ=h of the glottis.
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Fig. 7. (a) Two cycles of the volume flux through the glottis in the limiting case of an infinitely long subglottal tract (R ¼ 0) and for a

fixed value s ¼ 0:8 of the jet contraction ratio, when f 0 ¼ 125Hz, z0=h ¼ 0:05 and pI ¼ 10 cm of water and (b) the corresponding

variation of vocal fold amplitude zðtÞ=h.
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The rapid variation in Q near f 0t ¼ 1
2
; 3

2
is caused by the abrupt increase in the value of the jet contraction ratio s at

those times at which dz=dt becomes negative. The near-discontinuity occurs because of the correspondingly rapid

motion of the jet separation point (Fig. 4) over the small time interval �‘g=Us, which is neglected in the present

calculation. This is evident from Fig. 7, which shows predicted uniformly smooth variations of Q=Qo obtaining when

the same calculation is performed for a constant mean value of the contraction ratio s ¼ 0:8.
5.3. Influence of the length of subglottal tube for lightly damped waves

Two damping mechanisms are included in the present theory: the internal damping of the vocal fold material,

specified by the coefficient go of Eq. (2.2), and damping due to radiation into the lung plenum, determined by the

reflection coefficient R. Light damping by the lungs accordingly corresponds to jRj�1; it is then likely that the multiple

reflection of sound from opposite ends of the subglottal tube will have a significant impact on the volume flux through

the glottis. The magnitude of this effect must also depend on the length ‘ of the subglottal tube, or rather on the

effective acoustic length L ¼ ‘ þ ‘E.
Fig. 8 depicts the calculated variation of Q=Qo for one cycle whenR ¼ 0:9 for a range of increasing subglottal lengths

L in the limit in which the end correction ‘E of the glottis is neglected (or, more strictly, when f 0‘E=co is sufficiently

small that the approximation ‘E ¼ 0 is assumed to be valid in Eq. (4.6), wherein the series expansions were truncated at

n ¼ 50). Case (a) of the figure, where 2f 0L=co ¼ 0:2, would correspond roughly to the situation in an adult male if we

had taken ‘E�10 cm (with ‘ � 17 cm). Figs. 8(b)–(e) show the progressive changes in the volume flux waveform

predicted to occur in an experimental simulation in which the length of the subglottal tube is increased in stages to a

maximum at which 2f 0L=co ¼ 1. In case (e) the duct length is one half of the acoustic wavelength at frequency f 0 (i.e. f 0

then corresponds to the resonance frequency of an open ended tube of length L)—the waveform is seen to take its

maximum value Q=Qo�2 in this resonant case, and to resemble in shape the profile for an infinite duct (R ¼ 0, Fig. 6).

Peak values are smaller for the other cases shown in the figure. However, cases (b), (c) indicate a strong influence of the

second harmonic, occurring when the duct length corresponds approximately to a quarter-wave resonator.

The calculations have been repeated (see Fig. 9) for the same conditions, but the retention of ‘E in Eq. (4.6) for the

case ‘E ¼ 13 cm (so that L ¼ ‘ þ ‘E�30 cm). Increasing the mean end-correction of the glottis is equivalent to
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Fig. 9. Dependence of the volume flux waveform on the length L of the subglottal duct when jRj ¼ 0:9, f 0 ¼ 125Hz, 2f 0‘E=co ¼ 0:1,
z0=h ¼ 0:05 and pI ¼ 10 cm of water; for (a) 2f 0L=c0 ¼ 0:2, (b) 0.45, (c) 0.6, (d) 0.8, and (e) 1.0.

Fig. 8. Dependence of the volume flux waveform on the length L of the subglottal duct when jRj ¼ 0:9, f 0 ¼ 125Hz, 2f 0‘E=co�0,

z0=h ¼ 0:05 and pI ¼ 10 cm of water; for (a) 2f 0L=c0 ¼ 0:2, (b) 0.45, (c) 0.6, (d) 0.8, and (e) 1.0.
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increasing its acoustic resistance. In the notation of the appendix, this value of ‘E corresponds to ko‘E�0:3, or

2f 0‘E=co ¼ 0:1, (where ko � 2pf 0=co is the acoustic wavenumber) which is the largest value for which ðko‘EÞ
2 can be

said to be small compared to unity, a condition required for the validity of the Green’s function used in these

calculations.
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Fig. 10. Dependence of the volume flux waveform on the length L of the subglottal duct when jRj ¼ 0:5, f 0 ¼ 125Hz, 2f 0‘E=co ¼ 0:1,
z0=h ¼ 0:05 and pI ¼ 10 cm of water; for (a) 2f 0L=c0 ¼ 0:2, (b) 0.45, (c) 0.6, (d) 0.8, and (e) 1.0.
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A comparison of corresponding plots in Fig. 8 (2f 0‘E=co � 0) and Fig. 9 (2f 0‘E=co ¼ 0:1; ‘E ¼ 13 cm) indicates very

similar volume flux profiles and amplitudes, with the second harmonic appearing in both cases when 2f 0L=co�0:5.

5.4. Heavily damped waves

The possible influences of subglottal wave motions on the glottal flow are much reduced when the damping increases,

which is achieved theoretically by reducing the magnitude of the reflection coefficient R. Volume flux profiles are

plotted in Fig. 10 for cases where jRj ¼ 0:5 and ‘E ¼ 13 cm (2f 0‘E=co ¼ 0:1). Evidently, there are now only relatively

minor changes in the waveform as 2f oL=co increases from 0.2 in Case (a) to the resonance configuration of Case (e),

with a very marginal increase in amplitude at resonance.
6. Conclusion

Experimental laboratory models designed to replicate the interaction between flow in the subglottal tube and the

glottis can be influenced by sound waves in the subglottal system that are excited by the interaction. It is therefore

important to take proper account of the acoustic properties of the whole system in order to obtain a proper

interpretation of experimental results. The theory of this paper is roughly applicable to those studies of

the subglottal region where unwanted acoustic feedback from the supraglottal vocal tract needs to be suppressed,

and which is achieved experimentally by allowing the glottis to communicate directly with the ambient free

space.

Our nonlinear mathematical model of these interactions is applicable in phonation instances where the glottal cross-

section is ‘large’ over most of a typical cycle, so that its acoustical ‘end correction’ does not become too large.

Numerical predictions indicate that a change in the length of the experimental subglottal tube can produce alterations in

the unsteady (sound generating) glottal volume flux during excitation by a nominally steady volume flow of air from the

lungs. These modifications become very significant in a lightly damped experimental system, where proper account is

not taken of absorption damping of the sound by the lung complex. There is a noticeable but small increase in volume

flux magnitude at the resonance occurring when the effective acoustic length L of the subglottal tube is equal to half the

acoustic wavelength; perhaps of more significance is the strong appearance of second harmonic generation at
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intermediate lengths, when L is roughly one quarter of the acoustic wavelength. On the other hand, changes in the

volume flux with the length L tend to be relatively small when lung damping is large.

These detailed conclusions must necessarily be dependent to some extent on the mechanical model of the glottis. The

discontinuous nature of the aerodynamic edge force on the glottis is of no importance—this is a common feature of

other models that is usually suppressed without mention. The prediction that nonlinear coupling between the glottal

motion and the subglottal fluid and acoustic motions produces a modified volume flux through the glottis appears to be

quite general.
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Appendix A. Appendix: Approximate Green’s function

The solution of Eq. (3.9) is required at points x in the free space in region A of Fig. A.1 at distances jxjb2a from the

glottis when y is in region E close to the glottis.

Put

Gðx; y; t; tÞ ¼ �
1

2p

Z 1
�1

Ḡðx; y;oÞe�ioðt�tÞ do, (A.1)

so that Ḡ satisfies the inhomogeneous Helmholtz equation ðr2 þ k2
oÞḠ ¼ dðx� yÞ, ko ¼ o=co. The characteristic

frequency is taken to be sufficiently small (ko

ffiffiffiffiffi
A
p

51) that only plane waves can propagate within the subglottal and

lung ducts.

The functional form of Ḡðx; y;oÞ is derived using reciprocal relation Ḡðx; y;oÞ ¼ Ḡðy; x;oÞ (Rayleigh, 1945), by

placing the point source at x in free space and solving for Ḡðy; x;oÞ as a function of y in the vicinity of the glottis

(cf. Howe, 2003, 2005). The source generates a spherical wave incident on the glottis; the spherical wave is reflected from

the glottis flange, so that the net exterior field at E in Fig. A.1 can be taken in the form

Ḡ � �
eiko jxj

2pjxj
þ

geikojyj

2pjyj
, (A.2)
Fig. A.1. The regions L, S, E, A used to define the approximate Green’s function.
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where the second term on the right (involving an amplitude g to be determined) represents a spherical wave radiated

from the glottis in response to the forcing of flow through the glottis by the incident wave and by waves reflected back

and forth within the subglottal tube.

Within and in the immediate vicinity of the glottis we write

Ḡ � aþ bF
ðyÞ, (A.3)

where a and b are constants to be determined, and F
ðyÞ is defined with the asymptotic properties (3.13) for some

particular configuration of the glottis, which for the moment is assumed to be of fixed shape. This expression for Ḡ must

merge into a combination of plane waves within the body S of the subglottal tract, where

Ḡ � ASe
ikox0 þ BSe

�ikox0 ; �‘ox0o0, (A.4)

for suitable constants AS; BS. In the lung region L of Fig. A.1, waves entering from the subglottal tube are absorbed

(nominally at x ¼ �1) in the lung, where we therefore put

Ḡ � CLe
�ikox0 ; x0o� ‘, (A.5)

for some constant CL.

The coefficients a; b; g;AS;BS;CL in (A.2)–(A.5) are determined by matching the different representations of Ḡ where

neighbouring regions of validity overlap. At the junction between the lung and subglottal tube it is sufficient to equate

the potentials and volume flux on either side of x0 ¼ �‘, which yields

AS ¼ �
AL �A

2A

� �
CLe

2iko‘; BS ¼
AL þA

2A

� �
CL. (A.6)

Similarly equating expressions for Ḡ and @Ḡ=@x0 just to the left of the glottis in Fig. A.1 (where kojx
0j51 and the second

approximation of (3.13) is applicable), we find

a� b‘0 ¼ fðAL þAÞ � ðAL �AÞeiko‘g
CL

2A
;

b ¼ �ikofðAL þAÞ þ ðAL �AÞeiko‘g
CL

2A
:

9>>=
>>;. (A.7)

Finally, outside the glottis in the overlap of regions E and A, the first of conditions (3.13) yields

a ¼ �
eiko jxj

2pjxj
þ

ikog
2p

; b ¼ �
g
A

. (A.8)

Eqs. (A.6)–(A.8) must now be solved for the coefficients in terms of the incident spherical wave from x. However,

because the sources in Eq. (3.8) are either within the lung or in the jet just outside the glottis, only the values of a; b and

CL are actually needed. In particular, noting that ko‘
0 and k2

oA are both small, we find

b ¼
ikoð1þ jRje

2iko‘Þeikoðjxjþ‘
0Þ�k2

oA=2p

2pjxjð1� jRje2ikoL�k2
oA=pÞ

, (A.9)

where L ¼ ‘ þ ‘0 and R is defined as in Eq. (3.12).

The factor e�k2
oA=2p in this formula represents the action of dissipation produced by radiation into free space (via the

second spherical wave in (A.2)). Because k2
oA51 this dissipation is small compared to the absorption by the lungs,

whose magnitude is determined by that of jRjo1, and it will therefore be neglected, leading to

b ¼
ikoð1þ jRje

2iko‘Þeikoðjxjþ‘
0Þ

2pjxjð1� jRje2ikoLÞ
. (A.10)

To the same order of approximation it is found that

a ¼ �
eiko jxj

2pjxj
; CL ¼

�Teikoðjxjþ‘
0Þ

2pjxjð1� jRje2ikoLÞ
, (A.11)

where T is defined in (3.12).

The space–time form of Green’s function for source points y in regions E and L are now obtained by substitution of

formulae (A.3) and (A.5) into the integral (A.1). To illustrate the procedure consider the evaluation of

GLðx; y; t; tÞ ¼ �
1

2p

Z 1
�1

CLe
�ioðt�tþx0=coÞ do. (A.12)
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The condition jRjo1 permits CL to be expanded in the form

CL ¼ �
T

2pjxj

X1
n¼0

jRjne2inkoLþikoðjxjþ‘
0 Þ. (A.13)

Substitution into (A.12) and term by term integration then yields the result (3.11a) of the main text.

A similar expansion is used to obtain the formal representation (3.11b) for GE. Note, however, that the above

derivation by Fourier transformation is strictly applicable for a glottis of fixed configuration, defined by time-

independent values of F
ðyÞ and ‘0. But each of the expanded representations (3.11a, b) clearly identifies an infinite

sequence of separate interactions with the glottis occurring at distinct source times. The formulae can therefore be

generalized to accommodate slow variations in glottal geometry simply by associating each interaction at the

appropriate source time t with the corresponding potential function, such that F
 ! Fðy; tÞ and with the values of the

‘0s chosen with the appropriate time delay determined by the number of internal reflections in the subglottal tract prior

to emission through the glottis and radiation to the far field region A of Fig. A.1. This is the procedure successfully

applied and described in more detail by Howe and McGowan (2007).

However, this means that there is a succession of wave elements at x in the far field, corresponding to the successive

terms in the expansion (3.11a), each of which has a complicated phase dependence. Thus, the phase of the nth

component of (3.11a) would depend on n different values of ‘0 determined by the retarded times at which internal

reflection occurs at the glottis prior to radiation into free space. When jRj is large many terms in the series expansion

(3.11a) are required, and many multiple reflections within the tract are important. In this case the relevant values of ‘0

will tend to be distributed over a large number of realizations of the state of the glottis during a typical cycle, and to a

good approximation the phase can be calculated by replacing each occurrence of the end-correction ‘0 by its mean value

‘E defined as in (3.14). The same can be done when jRj is small, because in this case the number of relevant reflections is

small and the corresponding overall phase shift introduced by the reflections is small.
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